Collaborators

  • Suman Datta, Georgia Tech
  • Patrick Fay, Notre Dame
  • Susan Fullerton, University of Pittsburgh
  • Debdeep Jena, Cornell
  • Gerhard Klimeck, Purdue
  • Theresa Mayer, Carnegie Mellon
  • Maja Remskar, Jožef Stefan Institute
  • Robert Wallace, University of Texas at Dallas
  • Huili Grace Xing, Cornell

 

Midwest Institute for Nanoelectronics Discovery

The Midwest Institute for Nanoelectronics Discovery (MIND), led by the University of Notre Dame from 2008-2012, was one of four centers in the Semiconductor Research Corporation's Nanoelectronics Research Initiative (NRI). The center's aim was to uncover novel device technologies to surpass the performance of the transistor used in electronics systems, in terms of size, speed, and energy efficiency. The MIND team led the development of the tunnel field-effect transistor—a device that could outperform transistors at low voltage—and achieved the first demonstrations of these transistors in compound semiconductor materials1-13.

The center included researchers at Notre Dame, Purdue, Penn State, and the University of Texas at Dallas. The National Institute of Standards and Technology (NIST), the City of South Bend, and the State of Indiana partnered with the NRI to fund MIND research (see diagram below).

MIND org chart

Since 2013, Notre Dame has led two additional SRC centers that look beyond the tunnel transistor. For work done by those centers, visit LEAST.nd.edu and ASCENT.nd.edu.

 

References

1. Q. Zhang, Y. Lu, C. A. Richter, D. Jena, and A. Seabaugh, “Optimum band gap and supply voltage in tunnel FETs,” IEEE Trans. Electron Dev., 61, 2719-2724 (2014). DOI: https://doi.org/10.1109/TED.2014.2330805 

2. W. S. Hwang, M. Remškar, R. Yan, T. Kosel, J. K. Park, B. J. Cho, W. Haensch, H. G. Xing, A. Seabaugh, and D. Jena, “Comparative study of chemically synthesized and exfoliated multilayer MoS2 field effect transistors,” Appl. Phys. Lett., 102, 043116 (2013). DOI: https://doi.org/10.1063/1.4789975
 
3. Q. Zhang, R. Li, R. Yan, T. Kosel, H. G. Xing, A. Seabaugh, K. Xu, O. A. Kirillov, D. J. Gundlach, C. A. Richter, and N. V. Nguyen, “A unique photoemission method to measure semiconductor heterojunction band offsets,” Appl. Phys. Lett., 102, 012101, (2013). DOI: https://doi.org/10.1063/1.4772979 

4. Q. Liu, L. Dong, Y. Liu, R. Gordon, P. Ye, P. Fay, and A. Seabaugh, “Frequency response of LaAlO3/SrTiO3 all-oxide field-effect transistors,” Solid-State Electronics, 76, 1-4 (2012). DOI: https://doi.org/10.1016/j.sse.2012.05.044 

5. W. S. Hwang, M. Remškar, R. Yan, V. Protasenko, K. Tahy, S. D. Chae, P. Zhao, A. Konar, H. Xing, A. Seabaugh, and D. Jena, “Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior,” Appl. Phys. Lett., 101, 013107 (2012). DOI: https://doi.org/10.1063/1.4732522 

6. G. Zhou, Y. Lu, R. Li, Q. Zhang, Q. Liu, T. Vasen, H. Zhu, J.-M. Kuo, T. Kosel, M. Wistey, P. Fay, A. Seabaugh, and H. Xing, “InGaAs/InP tunnel FETs with a subthreshold swing of 93 mV/dec and ION/IOFF ratio near 106,” IEEE Electron Dev. Lett., 33, 6, pp. 782-84 (2012). DOI: https://doi.org/10.1109/LED.2012.2189546 

7. Y. Lu, G. Zhou, R. Li, Q. Liu, Q. Zhang, T. Vasen, S. D. Chae, T. Kosel, M. Wistey, H. Xing, A. Seabaugh, and P. Fay, “Performance of AlGaSb/InAs TFETs with gate electric field and tunneling direction aligned,” IEEE Electron Device Lett., 33, pp. 655-657 (2012). DOI: https://doi.org/10.1109/LED.2012.2186554

8. R. Li, Y. Lu, G. Zhou, Q. Liu, S. D. Chae, T. Vasen, W. S. Hwang, Q. Zhang, P. Fay, T. Kosel, M. Wistey, H. Xing, and A. Seabaugh, “AlGaSb/InAs tunnel field-effect transistor with on-current of 78 μA/μm at 0.5 V,” IEEE Electron Device Lett., 33, pp. 363-365 (2012). DOI: https://doi.org/10.1109/LED.2011.2179915 

9. Q. Zhang, G. Zhou, H. Xing, A. Seabaugh, K. Xu, S. Hong, O. Kirillov, C. Richter, and N. Nguyen, “Tunnel field-effect transistor heterojunction band alignment by internal photoemission spectroscopy,” Appl. Phys. Lett., 100, 102104 (2012). DOI: https://doi.org/10.1063/1.3692589

10. R. Li, Y. Lu, S. D. Chae, G. Zhou, Q. Liu, C. Chen, M. S. Rahman, T. Vasen, Q. Zhang, P. Fay, T. Kosel, M. Wistey, H. Xing, S. Koswatta, and A. Seabaugh, “InAs/AlGaSb heterojunction tunnel field-effect transistor with tunnelling in-line with the gate field,” Physica Status Solidi C, 9, no. 2, pp. 389-392 (2011). DOI: https://doi.org/10.1002/pssc.201100241
 
11. G. Zhou, Y. Lu, R. Li, Q. Zhang, W. S. Hwang, Q. Liu, T. Vasen, C. Chen, H. Zhu, J.-M. Kuo, S. Koswatta, T. Kosel, M. Wistey, P. Fay, A. Seabaugh, and H. Xing, “Vertical InGaAs/InP tunnel FETs with tunneling normal to the gate,” IEEE Electron Dev. Lett., 32, pp. 1516-1518 (2011). DOI: https://doi.org/10.1109/LED.2011.2164232 

12. A. Seabaugh and Q. Zhang, “Low voltage tunnel transistors for beyond-CMOS logic,” Proc. IEEE 98, 2095-2110 (2010). DOI: https://doi.org/10.1109/JPROC.2010.2070470

13. K. Bernstein, R. Cavin, W. Porod, A. Seabaugh, and J. Welser, “Device and architecture outlook for beyond CMOS switches,” Proc. IEEE 98, 2169-2184 (2010). DOI: https://doi.org/10.1109/JPROC.2010.2066530